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An appraisal is made of existing solutions of magnetohydrodynamic

boundary-layer equations for stagnation flow and flat-plate flow, and

some new solutions are given. Since an exact solution of the equations

of magnetohydrodynamics requires complicated simultaneous treatment of

the equations of fluid flow and of electromagnetism, certain simplifying

assumptions are generally introduced. The full implications of these

assumptions have not been brought out properly in several recent papers.

It is shown in the present report that for the particular law of defor-

mation which the magnetic lines are assumed to follow in these papers a

magnet situated inside the missile nose would not be able to take up any

drag forces; to do so it would have to be placed in the flow away from

the nose. It is also shown that for the assumption that potential flow

is maintained outside the boundary layer, the deformation of the magnetic

lines is restricted to small values. The literature contains serious

disagreements with regard to reductions in heat'transfer rates due to

magnetic action at the nose of a missile_ and these disagreements are

shown to be mainly due to different interpretations of reentry conditions

rather than more complicated effects.

In the present paper the magnetohydrodynamic boundary-layer equation

is also expressed in a simple form that is especially convenient for

physical interpretation. This is done by adapting methods to magnetic

forces which in the past have been used for forces due to gravitational

or centrifugal action. The simplified approach is used to develop some

new solutions of boumdary-layer flow and to reinterpret certain solutions

existing in the literature. An asymptotic boundary-layer solution repre-

senting a fixed velocity profile and shear is found. Special emphasis is
put on estimating skin friction and heat-transfer rates.

INTRODUCTION

Several recent papers deal with reduction in skin friction and heat-

transfer rates due to the influence of magnetic fields on electrically
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conducting flows along flat plates (ref. i) and near stagnation points
(refs. 2 to 6). The reason for this strong interest is that the elec-
trical conductivities produced in the high-temperature region near the
nose of reentering blunt bodies appear sufficiently high to cause such
effects. This is especially so if the possibility of seeding the flow
with easily ionizable materials is considered.

Since an exact treatment of magnetohydrodynamicflows would require
a simultaneous solution of the equations of fluid motion and of the
electromagnetic equations, simplifying assumptions are generally intro-
duced. In the understandable rush to obtain numerical results the full
implications of these assumptions have not been properly brought out.
As a result, in somecases it is unclear which problem is actually
being solved and to what approximation the results are correct. An

attempt is made in this paper to clarify this situation. It seems also

that insufficient efforthas been made to present the problems in a

form that lends itself most readily to physical interpretations of skin

friction and heat-transfer rates of a great variety of boundary-layer

flows. A simplified approach is developed in this paper to reinterpret

existing results from a novel viewpoint and also to develop some new

solutions. For purposes of orientation, the problems treated are out-

lined in the following paragraphs.

In reference i the calculations for boundary-layer flows along flat

plates are simplified by assuming that the magnetic field induced by the

motion of the flow across the original magnetic field is small compared

with the originally imposed magnetic field. In references 2 and 4_ which

deal with stagnation flow, the deformation of the magnetic lines due to

the induced magnetic effects is included in the considerations. Since

general solutions would be very hard to obtaln, the simplifying assump-

tion is made that the deformation of the magnetic lines is restricted to

a particular law. Furthermore_ the magnetic lines are subjected to an

especially simple boundary condition at the surface of the blunt body.

It is found in the present paper that for the particular deforma-

tion and boundary conditions of the magnetic lines, a magnet situated

in the blunt nose will not be able to take up any forces and thus its

field cannot offer resistance to the flow. On the contrary, the magnet

would have to be situated in the flow if it is to take up forces.

In reference 2 and in one example in reference 4 the additional

assumption is introduced that the stagnation flow outside the boundary

layer remains of the potential type even when deformation of the mag-

netic field is included in the considerations.

It is shown in the present paper, however, that for the particular

law of deformation chosen, the induced magnetic effects or the deforma-

tion of the lines must be small if potential flow is to be maintained



under action of the magnetic force. The results for the assumed
potential flow thus apply only to small induced effects or deformation
of the magnetic lines, contrary to what is implied by the numerical
analysis based on the complete equations that include the induced
effects. In the present paper another particular law of deformation
is pointed out which permits potential flow to exist for large defor-
mations of the magnetic lines. In contrast, it also is shownthat the
assumption of small deformation of magnetic lines does not always guar-
antee the existence of potential flow under action of a magnetic force.

The order of magnitude of the induced effects is governed by the
so-called magnetic Reynolds number RM = _UL, where _ is the electri-
cal conductivity, _ is the magnetic permeability, and U and L are
a velocity and a length characteristic of the given problem. The
manner in which the equations in reference 2 are madedimensionless
suggests that RM is based on the boundary-layer thickness. The
information that the induced effects are small is thus actually
included in the equations of reference 2, but in such an indirect
manner that it is not immediately evident there.

Apparently a misinterpretation of the assumptions and results in
reference 2 has led to an attempt in reference 5 to makea nu_ericai
comparison of the results for the shear based on the assumption of small
induced effects with those from reference 2 based on supposedly complete
induced effects. Such a comparison seemsunnecessary since the ass_-
tion of small induced effects is implicitly contained in reference 2.
The small difference of 1/400 between the results for the shears in
these two references is further evidence that the approaches are bast-
cally the same.

In reference 6 the calculation of the reduction in heat-transfer
rate due to the magnetic field is based on the assumption of small
induced effects, and for reentry conditions a reduction of only 5 per-
cent was obtained as comparedwith 28 percent in reference _. In ref-
erence 6 the boundary conditions at the shock ahead of the blunt body
are also included; for simplicity, both body and shock are assumedto
be spherical. In contrast, in reference 3 (based on ref. 2) the assump-
tion is madethat the pressure distribution of the stagnation flow
remains constant and is independent of the magnetic-field strength.
This assumption is offered in reference 6 as the major reason for the
differences in results for the reduction in heat-transfer rates. It is
shownin the present paper that the difference can_ however_ be mainly
attributed to different numerical values of the magnetic parameter
_B2L/ou (where B is the magnetic induction and 0 the density).

The simplified approach to magnetohydrodynamicboundary-layer flows
is based on the assumption that potential flow is maintained outside the



boundary layer under action of the magnetic force. In that case the
pressure can be split into a dynamic and a magnetic part. This idea of
splitting the pressure is actually borrowed from approaches developed
in the past for flows subject to mechanical mass forces such as
gravitational or centrifugal force. The analysis of boundary-layer
flows is further simplified by dividing them into two major types. In
one type the pressure distribution (dynamic plus magnetic) is assumed
to be constant and independent of the magnetic field; in the other_ the
velocity distribution in the flow outside the boundary layer is assumed
to be constant. The second type has received only very brief treatment
in the literature.

SYMBOLS
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velocity vector

velocity componentsin x- and y-directions

Cartes ian coordinates

characteristic velocity

characteristic length

angle extended from body axis

nose radius

defined by u = XUN'(y) and v =-u_T(y)i__
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Subscripts:

D hydrodynamic

M magnetic

P potential

o undisturbed stagnation flow

b along body

st stagnation point

u uniform

(~)

free stream

Superscripts :

( ) vector

()', ()-, (),,'

dimensionless quantity; used only when designation is not
obvious

derivatives
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EQUATION OF MOTION AND OHM 'S LAW

For the steady flows under consideration, the equation of motion

with the inclusion of magnetic forces is

w " VW =-_Vp + J × B_ + V_w-_+ _TV " W
(l)

Ohm's law for fluid moving in a magnetic field is

j = o(E + w × B) (2)

The two terms in the parentheses of equation (2) indicate that for the

interaction of a moving fluid with a magnetic field, essentially two

types of electromotive forces exist by means of which charges may be

separated and a closed current produced.

For simple flow analysis, those cases are of special interest in

which the motionally induced electromotive force (represented by the

electric intensity w × B in eq. (2)) is alone responsible for current

closing, and the static electromotive force (represented by the electric

intensity _) can be ignored.

Stagnation flow is one of the cases in which E can actually be

ignored for physical reasons. Because of the flow symmetry (the applied

magnetic field is assumed to be uniform) the motionally induced currents

on each side of the center plane or axis flow in opposite directions and

have exactly the same value. For axially symmetric stagnation flow the

currents simply flow in circles.

The boundary-layer flow along a flat plate does not have this

symmetry of stagnation flow. The currents thus require for closure an

outside wire connection. If this outside connection has a resistance,

work has to be performed in overcoming this resistance, which is made

possible through the existence of a static electromotive force (E / 0).

If the special artifice of a short-circuiting outside wire is used, the

existence of a static electromotive force is no longer necessary for

current flow. Due to the artificia].ity of this three-dimensional wire

connection caution is necessary in defining the two-dimensional

boundary-value problem.

For simplicity the condition E = 0 is used in the magnetohydro-

dynamic boundary-layer equations throughout this paper. 0hm's law is



thus used in the form

J =o(¢×Z (3)

MAGNETIC-FIELD DEFORMATION

Mathematical Development and Solution

of Differential Equation

The induced current given by 0hm's law (eq. (3)) has a magnetic

field around it which is determined by Ampere's law

-9 -9

j = v x I{ (4)

where H represents the total magnetic intensity. It is convenient to

express the magnetic induction B = kH in Ohm's law in the form

Bu + b; where Bu is the original imposed magnetic field and b the

induced field. The induced magnetic field, and thus the deformation of

the magnetic lines, can be obtained by equating the current from equa-

tions (_) and (4):

Vxb =_X(Bu+b) (9)

If it is taken for granted that the original imposed magnetic field Bu

is produced only by currents flowing outside the fluid_ V x B u is zero

and equation (5) can be written in the form

V x B = ka(w x

or the equivalent form_ with B : zH,

(6)

_7 x H = _a(w x (7)

or in dimensionless form
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Vx_~=RM(_x (8)

The quantity RM = _oUL is the magnetic Reynolds number, a dimension-

less measure of the induced effects_ and large values of RM yield

large deformations of the magnetic lines. The velocity U and the

length L are characteristic of the particular problem under study.

In references 2 and 4 a particular solution of the differential

equation (8) for the deformation of the magnetic field is found by

postulating a law which the deformation is to follow. This law is

Er = -_(z) Ex = _g'(z) (9)

According to equation (8) the actual deformation of the magnetic field

depends, also, on the velocity distribution. Since the velocity vector

appears in the equation of motion (i) as well as in equation (8), a

simultaneous solution of these two equations would be necessary to find

the actual deformation of the magnetic lines. Since this solution is

difficult to obtain_ certain simplifying assumptions have been made for

the effect of the magnetic force on the velocity distribution. In the

subsequent development the designation _ for dimensionless quantities

is omitted for convenience.

In reference 4 it is assumed that the velocity distribution of the

viscous stagnation flow is of the form

u = xf'(y) v = -f(y) (loa)

In reference 2_ the velocity distribution is of the same form but

expressed in different symbols, as follows:

u = xu,(y) v = -_(y) (lOb)

In the present paper the notation for the velocities in equation (lOa)

is adopted. To avoid confusion between the symbol u as used in equa-

tions (lOb) and in the present paper, the notation of equations (lOb) is

changed herein to
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u : xuN,(y) v: -u_(y) (loc)

For potential flow f' (or UN') is constant or unity so that

u = x and u = -y (ii)

where the quantities are in dimensionless form.

It is shown in detail in the next section of the present paper

that the assumption of potential flow actually limits the deformation

of the magnetic lines to small values. The general trend of deformation

calculated in reference 4 on the basis of this simplifying asstmlption

seems, however; correct. _lis trend is verified in a subsequent section

of the present paper with the aid of physical reasoning and _ brief check

based on the equation for small deformation of magnetic lines. In fair-

ness it should be stated that in reference 4, in a subsequen< n_me_'ica]

development of boundary-layer flow for large RM, the assumptio1_ of
potential flow is not used.

The defom_ation of the magnetic field is determined in reference 4

by substitution of the potential-flow velocity distribution (eqs. !i),

together with the postulated law of defomnation of the magnetic li_.:_s

of equation (9), into equation (8). Equation (8) is first written in

Cartesian coordinates:

__ _Hx
- RM(u_ - vH_) (_

_x by

Substitution of equations (9) and (i0) into equation (12) yields

h" : RM(f'h- h'f) (I}

or for potential flow, where f' = i,

h" = RM(h - h'y) (13a)

Equation (13a) is solved in reference 4 subject to the boundary condi-

tions
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h(O) = -i h'(O) = 0 (14)

where (0) corresponds to conditions at the wall where y = O. The
solution in reference 4 yields magnetic lines that, for large values of
RMy2, becometangent to the fluid streamlines as indicated in sketch (a),
which corresponds to figure 4 in reference 4 and is repeated here for
convenience.

o

o

fl]
(D

/Typical magnetic line

F!uid streamline

Distance along wall, XRMI/2

Sketch (a)

The trend of deformation of the magnetic lines is verified as

follows for the condition that the product h'y is small compared with

h. (Xhis condition, which corresponds to small deformations, is shown

later to be reqT_ired for existence of potential flow.) Equation (13)
is reduced to

h" - %_h : 0 (15)

A solution of this equation subject to the boundary conditions at the

wall in equations (14) gives

and

h : -cosh_y (16)

h': (17)
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or, substituting from equation (9) for the y and x components of the

magnetic field,

Hy = cosh y (18)

and

(19)

verification is thus obtained for the increasingly negative slope of the

magnetic lines.

Physical Interpretation of Deformation and

Effect on Location of Magnet

Perhaps the most important concept in the physical interpretation

of the results is that an electrically conducting flow more or less

drags the magnetic lines along. This concept is now applied to the

problem which is mathematically discussed in references 2 and 4. It is

assumed there that the magnetic field imposed for zero flow conditions

is normal to the plate and uniform, that is, the magnetic lines are

spaced equally (sketch (b)). Now, assume that the flow is started and

approaches steady stagnation flow near the blunt body nose. It is

evident that the magnetic lines will be dragged away from the line of

symmetry (sketch (c)). Magnet far above nose

Uniform iI
il

Sketch(b)

magnetic field

\ t1111/111111

..t .l. I

Deformed 7ri
magnetic / ]

lines---_// !

Streamlin i
I

ri,Nose with =
77-i77-717777/) I i I t i _1/ I/7-77 777

Sketch (c)

The boundary conditions for the magnetic field at the plate are given

in equations (14) as h(O) = -i and h'(O) = O. According to equa-

tions (9) this means that the normal component Hy is constant and the
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longitudinal component Hx is zero. In other words, the boundary
conditions are that the magnetic field at the nose is uniform and
normal to the wall after its deformation to the steady state has taken
place. Sketch (c), based on the physical interpretation, evidently
agrees with the mathematical results of reference 4 presented in
sketch (a). Specifically, the concentration of the magnetic lines or
the increase in field strength in the direction away from the nose is
in agreement with the results in reference 4 expressed in the approxi-
mate form (necessary for potential flow) by equations (18) and (19).

The fact that the magnetic lines are bent inward and that the field
strength increases in the direction away from the plate in sketch (c)
raises the suspicion that the magnetic lines are not actually anchored
in the plate but in a magnet or coil located at a large distance
(approaching infinity) away from the plate. This is further evident
from the following physical consid-
erations. If the magnetic lines _all with _ _
were anchored in the plate the
plate would have to take up the
magnetic shear forces caused by
their deformation. Thus the
magnetic lines would sweepout-
ward, as shownin sketch (d).
It should be noted that in
sketch (d) it is assumedagain
that the magnetic field is origi-
nally uniform and normal to the

/Original
Deformed / / magnetic

magnetic ! i field
lines j-j

_LStreamlines _
7 _--Nagnet in nose

Sketch (d)

nose; in contrast the magnetic lines are assumed to become normal to a

wall high above the nose as they are deformed. For the practical case

the original magnetic lines are of the form shown in sketch (e) and

the deformed magnetic lines in the

stagnation region will be swept

away by the flow without approaching

the vertical away from the nose.

Whether a magnet situated in the

outside flow is practical is not

discussed here except to note that

it could perhaps be useful for

establishing a magnetic drag skirt
if situated to the side of the

stagnation region. Naturally, a

magnet situated above the stagnation

Deformed

magnetic I .Original

lines\ i / magnetic

StreamlinesJ_t _

Sketch (e)

region as in sketches (c) and (d) would block some of the flow; the

stagnation-flow streamlines are drawn only to illustrate the hypotheti-

cal problem presented in references 2 and 4.

Finally, the physical meaning of the boundary conditions h'(0) = 0

and h(0) = -i in sketches (a), (b), (c), and (d) is discussed below.
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As mentioned previously, these boundary conditions signify that the

magnetic lines at the wall are nor_l and uniformly spaced. The condi-

tion that the magnetic lines are still normal to the nose after their

deformation means that the nose must have a magnetic permeability

approaching infinity, so that no resistance is offered to the motion of

the magnetic lines. The situation is analogous to having, say, a string

rigidly suspended at large distance from the nose but able to move

through the nose without resistance. As it is dragged away from its

point of suspension by the flow it will be displaced from its original

position at the nose, although the velocity at the nose is zero because

of friction. It seems evident that the stagnation flow would sweep

away the magnetic lines issuing above the nose in such a manner that

their spacing normal to the nose is not uniform. The uniformity of

field strength is specified by the condition that, according to the

postulated deformation law (eqs. (9)), the y-component of the magnetic

field is Hy = -h(y) and thus is solely a function of the y-coordinate

(normal to the plate). The infinite magnetic permeability of the plate

plays its part only in the sense that it offers no resistance to the

particular distribution of magnetic lines imposed on it and cannot exert

a force. For the law of deformation and the boundary conditions stated

in this section, the magnetic field at the nose is thus a result of the

interaction rather than being determined before the interaction.

If the high-permeability nose were of finite dimensions so that the

displacement of the lines were resisted at its ends_ a magnetic pressure

could build up in the flow direction. This situation furnishes an inter-

esting counterexample to the case in which the magnetic lines are

anchored in the plate by building up a magnetic shear in the direction

of the plate.

For purposes of illustration it is assumed that the magnetic pres-

sure in the flow where _ is finite builds up in a one-dimensional man-

ner. Under such conditions the magnetic lines remain normal to the nose

as they can redistribute themselves freely in the high _ nose_ and the

law of magnetic-field deformation is

: h(x) : 0 (2O)

Again it is assumed that the flow is a potential stagnation flow; that

is_

u : x v : -y (21)
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Substitution of equations (20) and (21) into equation (12) yields (in

dimensional form)

dHy

- (22)

for deformation of the magnetic field. Integration yields

Hy = Hu e_x2/2 (23)

The intensity of the magnetic field thus increases in the longitudinal

direction, and unless a finite plate representing the nose is considered

the lines are swept to infinity. (The deviations from one-dimensional

magnetic pressure due to end effects are neglected.) Since the magnetic

pressure depends on Hy alone, the equation for the pressure of the

stagnation flow is

Pt - p = _ (x2 + y2) + _Hy2 (24)

or, after substitution of equation (23),

P(x 2 _ 2_qx 2
Pt - p = 2- + y2) + _u (25)

where Pt is total pressure.

LIMITATIONS OF THE MAGNETIC-FIELD CONFIGURATION

DUE TO ASSUMPTION OF POTENTIAL FLOW

General Development

In view of the great simplification obtained for the nonmagnetic

case by dividing the flow into a viscous rotational boundary-layer

region and a nonviscous potential outside flow, it is desirable to
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state the conditions under which such a division is possible in the

magnetohydrodynamic case. For that purpose, the equation of motion (1)

is rewritten in such a form that a distinction between potential, rota-

tional, and viscous flow is possible. Using the vector relations

and

-_ -_ ___2 _ ( w_w • VW = -wx _x
2

= v(w. ¢-vxvx 

gives

v,,,2 .-., __, ._,= w + v_7 X _7 X w- •
1 Yx 2 + pl--_p - x VX w 3v

For potential flow,

Equation (26) shows that if the velocity distribution is to have a

potential, (J X B---_/p must be expressible as a gradient or the equiv-

alent condition

Vx j XB -0 (27)
P

must exist.

It is interesting to note that in order to satisfy the condition

of potential flow, the velocity term in equation (26) has to be kept

free of p, since potential flow refers to the potential of the velocity

rather than its product with p. As a consequence the condition for

potential flow requires that the curl of (Tx B_/D be zero. Since

the induced currents produce Joule heat the density of the flow could

vary if compressibility effects were taken into account. It is evident

that the conditions for the existence of magneto-gas-dynamic potential

flow will be even more restrictive than those for magnetohydrodynamic

potential flow, where the density is assumed to be constant. The case
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of constant density is discussed in the present paper, rather than

special flows that include density variations. It can be also seen

from the relations at the beginning of this section that when the

magnetic force does not have a potential, the resulting curl would

have to be absorbed by the velocity field since it is capable of

rotational behavior while the scalar pressure field is not. The same

is also true in reverse - a rotational flow will produce a magnetic

force that is no longer derivable from a potential.

A few remarks concerning the terminology of potential flow under

action of magnetic forces would seem in order. The criticism has been

made that the word "potential" implies that the forces are part of a

conservative system, and since the currents produce Joule heat this

requirement of conservation is not satisfied. This definition of

potential may have been the first one historically_ but in more recent

usage the existence of a potential depends on the fact that the curl

of the particular quantity, be it force or velocity_ is zero. This is

irmnediately evident from the fact that the electric tank is used to

simulate potential flow_ and in addition the very viscous Hele-Shaw

flow is used to simulate potential flow. Perhaps the most outstanding

ex_r_ple in this connection is the potential flow around a body with

moving walls to prevent boundary-layer formation (ref. 7)- Thus the

conditions for potential flow are exactly fulfilled without the

necessity of using zero viscosity. Note, especiallyj that the dissi-

pation function does not become zero when the curl of the velocity dis-

tribution is set equal to zero.

Application to Law of Deformation of Magnetic Lines

for Stagnation Flow

For constant-density flow the existence criterion given in equa-

tion (27) for potential flow can be written as

The current density j

v× (7'× :o

is expressed by Ampere's law:

(28)

7>-- v x fi+ (29)

where H = _/W. Substitution of equation (29) into equation (28) results

in
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vx _vx_ x_]=o (30)

Expressed in Cartesian coordinates, the existence criterion of equa-

tion (28) is

The law postulated in reference 2 for the deformation of the mag-
netic field is

Hx = xh'(y) Hy = -h(y) (32)

Note that the magnetic intensity H has a dimension, whereas in refer-

ence 2 it is used in dimensionless form; this does not affect the
derivation.

If the scale constant is equal to unity, the velocity distribution

for potential stagnation flow is

u : x v = -y (33)

Substitution of equations (32) for the magnetic-field deformation

into equation (31) for the existence criterion yields

or

and

Finally,

x2h'h'')- _(_"x) :- 0

(hh") ' - 2h'h" = 0

_h'"- h'h"= 0 (3_)
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For subsequent use, equation (34) is integrated, where the relation

h 2

is used. According to equation (34), hh'" - h'h" = O. Therefore

(36)

and with integration,

h" - Ch = 0 (37)

where C is a constant.

It is important to note that a differential equation for h can be

obtained also by substitution of the magnetic transformation, equa-

tions (32), into the electromagnetic relation obtained by equating the

current j from Ampere's law, equation (29), with the current J from

Ohm's law, equation (2). Since for the stagnation flow the electric

intensity E = 0 is zero, the result is equation (8) (repeated here for

convenience):

-* --_ -_ H-_j --vxH =RM(wx (38)

Since the solution for the magnetic field H or the magnetic param-

eter h is unique, the differential equation obtained by substituting

equations (32) and (33) into equation (38) would have to agree with the

differential equation (37). The resulting differential equation is

already given by equation (13a), which is repeated here for convenience:

h" - RMh+ RMh'y= 0 (39)

To Justify the requirement that equations (37) and (39) be the same, C

must equal RM and the product h'y must be negligibly small; that is,
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h" -  Mh(O)= 0 (40)

Equation (40) is the same as equation (15) which was previously used to

analyze the deformation of the magnetic lines for small values of h'y.

The expression for h' obtained by integration of equation (15) is

h' =- R_ sinh(R_MY ) according to equation (17). It can be seen that

even the use of small y values does not always guarantee small values

of h' and that RM must also be restricted to small values if h'

is to approach zero.

The physical significance of this situation is found by recalling

that differentiation of equations (32) shows that h' = 8H_x = -_Hy/_y.

Thus h' gives the changes in the x- and y-components of the magnetic

field. The restriction of RM = a_UL to small values can be accomplished

by keeping _, U, and L small individually or together if h' is to be

restricted to truly small values. The components H x = h'x and Hy = -h

of the magnetic field are thus restricted to small deviations from their

values at the nose surface where Hx = 0 and Hy = -i, since the magnetic

lines are assumed to be perpendicular and uniformly spaced. This is

especially so if the characteristic length L and velocity U of the

flow region are small_ so that the deviations are restricted to the

neighborhood of the stagnation point.

Order of Magnitude of Induced Magnetic Effects

due to Restriction of Potential Flow

It is shown in the preceding section that the induced effects in

reference 2 are restricted to small values because of the assumption of

potential flow outside the boundary layer. However, no explicit state-

ment is made there concerning this restriction; as a matter of fact,

the numerical analysis is based on the complete equations that include

the induced effects. A search was made, however, to determine whether

this restriction is contained in the simplifying assumptions used.

For that purpose it was necessary to determine how the magnetic

Reynolds number (eqs. (4) to (8)), which is characteristic of the

induced effects, is defined in reference 2.

The clue to the magnitude of RM = _UL is given by the manner in

which the significant quantities are made dimensionless. In equa-

tion (20) of reference 2, which gives the dimensionless representation
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of the magnetic-field deformation_ the quantity 7 = i/_ov makes its
appearance. Further, the scale factor b of potential stagnation flow
is included in the dimensionless approach. The fact that the kinematic
viscosity v and b are used has a special meaning since the boundary-

layer thickness for stagnation flow is of the order of the constant

_/b. Though RM is not directly defined in reference 2, it is evi-

dently of the form RM = wobL 2, where L represents the boundary-layer

thickness (the scale constant b has the dimension i/t). The magni-

tude of RM is evidently very small, since _ = 4_ x 10-7 volt-sec/amp-m

and v for high-temperature air near the missile nose is, say,

10 -4 m2/sec, and the value for _ is no higher than 250 ohms/m (appar-

ently seeding with easily ionizable materials is not considered). As a

result the induced effects will be small and the restrictive conditions

for potential flow outside the boundary layer are satisfied.

Comparison of Calcu]ations for Small Induced Effects

Made im Reference 5 With Results in Reference 2

In reference 5, results of calculations based on the assumption of

_';_all induced effects are comi:ared with results from reference 2. Such

_ c ,mparison seems unnecessary since reference 2 actually contains the

assumption of small induced effects, though in a hidden manner. The

.;mall difference c_f 1/400 obtained in reference 5 between the shears

b'_,_;_._don machine c_jmputatioms and the calculations in reference 2 attest

to tills fact_ in principle the two approaches are actually the same.

The comparison made in ref_._rence 5 of the results in the two papers for

a :r'ange of _,_:_gnetic [',::rccpara_.tet_rs _B2/_b shows very small differ-

ences; this is to be expected :,:inc<:ref:'r_mce 2 in essence also assumes

small induced magnetic fields.

Limitations of Magnetic-Field Configurations for

Small Deformations of Magnetic Lines

So far the limitations due to potential flow have been discussed

only for large deformations of the magnetic lines. The fact that for the

particular deformation law used in reference 2 potential flow could be
shown to exist for small deformations does not mean that potential flow

always exists when deformations are small. Perhaps a better insight can
be obtained into this situation (which was previously discussed as the

limiting case for a particular deformation law) by rewriting the crite-

rion for incompressible potential flow (eq. (28)) in a different form.
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The result is

y B_ --) --) --_ -9 -) --) -9 -9VX ( x --B • VJ - J • _B+ _7 • J + JV • h = 0 (41)

or, since _ • j = V ' B = O:

---) _ --9 --) --9 --@vx (j x =B vJ - j • VB=O (42)

For the case of stagnation flow treated in references 2, 4, and 5,

where a uniform magnetic field Bu is imposed and the induced field b

is small, _B = _(B u + becomes _YBu, which is zero, and the term

j • _JB is also zero. (For the two-dimensional case J • XTB is zero

even for arbitrary induced fields b since the current is always normal

to the plane in which the vector B = B u + b acts.) Now, it can be

shown that for the case of small deformations the current j is a

function of x only. For the deformation law Hy = -h(y) and

Hx = xh'(y), the current J : V × H is, according to equation (13a),

(15), and (40), represented by h". According to equation (40),

h": RMh(O)

where h(0) = -Hy is the original magnetic field. For the present

problem this equation serves only to indicate that the current depends

solely on the longitudinal or u-component of the velocity. According

to Ohm's law in the proper dimensions_ the current is thus

j : _uB b (45)

Since for potential stagnation flow u is proportional to x, the

current j is also proportional to x. Since the undeformed magnetic

field B u is normal to x, the dot product B u _j is zero. Thus

for this case substitution into equation (42) shows that the condition

of potential flow is satisfied for the complete stagnation flow (as

far as the induced effects can be considered small), in agreement with

previous results. The inclusion of the boundary conditions behind the

shock of course introduces new problems.
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It is evident that the existence of potential flow is not, in
general, guaranteed for any complete flow pattern together with a more
or less arbitrary magnetic field, even if the deformations of the latter
are small. It should, however, generally be possible to maintain poten-
tial flow when the magnetic lines are normal to the flow and the curva-
ture of the streamlines is small. The restriction of the direction of
magnetic lines and the curvature of the streamlines is used in refer-
ence i for the somewhatdifferent purpose of making the magnetic force
solely dependent on the longitudinal velocity. It is shown in a subse-
quent development of the present paper that the use of potential flow
outside the boundary layer simplifies the derivation of the boundary-
layer equations and helps very much in their physical interpretation.

A Finite Magnetic-Field Deformation Which is Valid

for the Complete Potential Stagnation Flow

A previous section contains a discussion of a magnetic-field con-
figuration where Hy = h(x) and Hx = O, that corresponds to a one-
dimensional magnetic pressure gradient along a finite plate or nose
with high magnetic permeability. Since VJ is perpendicular to B and
VB is perpendicular to J, according to equation (42) the field will be
curl-free for finite deformations also. From the present discussion and
from previouscomments, however, it is evident that the existence of
potential under finite deformation of the magnetic lines is the exception
rather than the rule.

Effect of Limitations due to Potential Flow on Equation of

Motion for Stagnation Flow

In equation (25) of reference 2 the equation of motion is presented

in the dimensionless form

UN"'+ UNUN" - (U')N 2 + 1 + h2(0-----!+(h') 2 - hh" : 0 (44)
7

This equation is used in reference 2 in conjunction with equation (20)

of that reference,

Th" + UNh' - _N'h = 0 (45)
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which also corresponds to equation (13) of the present paper for the

deformation of magnetic lines. Since for potential flow outside the

boundary layer yh' has to be small, and thus also u(y)h', inside

the boundary layer (where y and h' approach zero values at the

wall) equation (45) is reduced to

7h" - UN'h : 0 (46)

Substituting equation (46) into the equation of motion (44) and using

the previously shown condition that h' itself is small gives

up"'+ uNuN"- + i + - u'): o
7

(47)

This equation of motion for n_gnetohydrodynamic boundary-layer

flow is in agreement with the boundary-layer equation developed in a

subsequent section specifically for small deformations of the magnetic

lines (eq. (55)).

SIMPLIFIED ANALYSIS OF BOUNDARY-LAYER FLOW

For the potential flow outside the boundary layer the equation of

motion can be written in the form of equation (26), which is repeated

here for convenience:

If the magnetic force has a potential, it is possible to use

simplifying techniques developed long ago for mechanical forces having

a potential, such as gravitation or centrifugal force. For example,

in reference 8 (pp. 115-116) it is shown that for flow subject to a

gravitational force the pressure can be split into two parts, one due

to dyns_nic action and a static gravitational pressure Pgr due to the

weight of the fluid defined as

Pgr : -Dgh + Constant (48)
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It is also stated that this simplification cannot be applied to com-

pressible flows because the changes in density affect both static and

dynamic action. A detailed discussion in reference 8 shows that the

combined pressure consisting of the dynamic and the static gravitational

parts must satisfy the boundary conditions, for example, at a free
surface.

In an analogous manner, the pressure can be split for the case of

magnetic forces that have a potential. Equation (26) becomes

(49)

where the magnetic-pressure gradient is now balanced by the magnetic

force, or

-@ --_

j x B = VpM (50)

It is perhaps of interest to note that, in contrast to the gravita-

tional pressure (eq. (49)), the magnetic pressure (eq. (50)) does not

depend on the density. However 3 it was shown in a previous section (see

eq. (27) and following material) that the existence of a magnetic force

potential would be an extremely rare occurrence if compressibility were

accounted for, since the Joule heat produces density variations. Thus

the simplicity of equation (50) alone is not enough to permit pressure

splitting for compressible flow.

It was shown previously that the maintenance of potential flow out-

side the boundary layer is, in most cases, possible only when the deforma-

tion of the magnetic lines is small, but that even for this situation

potential flow need not always exist. The fact was also brought out

that potential flow should be possible when the magnetic lines are
normal to the flow and the curvature of the streamlines is small. Under

such conditions

J xB= _ B • -w(B • (51)

becomes

x  eu2= u (52)
P
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The above conditions are also specified in reference i, but without

mention of the fact that with them the simplifications of magnetohydrody-

namic potential flow are introduced.

With the above conditions the magnetohydrodynamic boundary-layer

equation can be written in the form

_ + v_U + _i _x(p D + PM) + mlu = _
_y P _y2

(53)

where

In the potential flow outside the boundary layer the z_gnetic f<,_'ce is

balanced by the magnetic pressure gradient_ or

- _-- + mlu P = 0 (54)
O Ox

Equation (53) without the magnetic terms is the conventional boul_dary-

layer equation. It is usually assumed that the pressure gradient

_pM/$X acts uniformly across the boundary layer. An altern_t _ form of

the equations can be obtained by replacing (_pM/_X_p with -mlu P

from equation (54) in equation (53), with the result

u_xU + v_+ i _PD_-_-+ ml(u - Up) = _ (55)

It is immediately evident that equation (55) is of the same form

as equation (47), which was obtained by limiting the approach in

reference 2 to small deformation of the magnetic lines:

u_'"+uN_"- (uN,)2+ i + h2(O)(l- uN') = 0
7

(56)
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For comparison, equation (55) is regrouped:

- l PD
_y2 _y P 8x

+ ml(u P - u) = 0 (57)

In comparing equations (56 ) and (57) it must be realized that equa-

tion (56) is written in dimensionless form while equation (57) is not.

The dimensionless parameter h2(O)/T used in references 2 and 3, how-

ever, agrees in essence with the dimensionless expression mx obtained

by multiplying m I by x and dividing by u, whereby

OBu 2
mx -

Ou

or, for stagnation flow where u = bx,

_Bu2
mx -

Db

In the following paragraphs the general scope of the problem is

outlined. A more specific analysis of a few selected cases is given in

the appendix with the aid of the split-pressure approach. Basic trends

in skin friction and heat-transfer rates are also discussed there.

It appears convenient to divide the great variety of boundary-layer

flows into two main types. For one the distribution of the pressure

(hydrodynamic plus magnetic) is assumed to be constant, whereas for the

other the velocity distribution in the potential flow outside the

boundary layer is assumed to be constant and independent of the magnetic-

field strength. The value of such a classification depends on whether

these types, singly or in a combined form, lead to physically realizable

boundary conditions. For example, for the boundary-layer flow along a

flat plate it should be possible to maintain constant pressure independ-

ently of the field strength, if certain conditions are satisfied. If a

magnetic field extending a finite distance above the plate and the

resulting changes in the flow direction are considered small (generally

necessary for potential flow), it should be possible to transmit a con-

stant pressure to the plate. Another example in which the assumption of

constant pressure distributions has been used is that of stagnation flow

behind the bow wave of a blunt body in hypersonic flow (ref. 2). While,

as shown in reference 6, the assumption of constant pressure distribution
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is not exact, it is shown in a subsequent section that the assumption

provides a valuable approximation.

When the velocity distribution of the potential flow is maintained

independently at the magnetic-field strength_ the boundary-layer flow

requires a magnetic pressure gradient that balances the magnetic force.

The maintenance of the velocity distribution may require the obvious

boundary condition of a pump, or may arise indirectly from more

involved boundary conditions. In the literature (ref. i) this type of

problem has been treated only for the case in which a given initial

flow acceleration outside the boundary layer is maintained against a

magnetic force. The case in which the velocity distribution of the

potential flow is maintained is also of interest for certain aspects

of stagnation flow. Details are given in the appendix.

In one case, the maintenance of a velocity distribution results in

the rare situation of a boundary layer that approaches a fixed velocity

profile (and fixed shear) in an asymptotic manner. This happens when

a _onstant velocity is maintained in the potential flow outside the

boundary layer. The equations for this and the previously mentioned

problems are given in the appendix.

REASONS FOR DIFFERENCES IN RESULTS FOR REDUCTION

IN HEAT-TRANSFER RATES

As noted in the introduction, the reduction in heat-transfer rates

(and skin friction) due to the magnetic field is given as 28 percent in

reference 3, whereas in reference 6 a reduction of only 5 percent is

obtained (in both papers the induced effects are small). The dif-

ference is ascribed in reference 6 to the simplifying assumption made

in reference 5 (based on ref. 2) that the pressure distribution in the

flow behind the bow wave is maintained independently of the magnetic-

field strength. In reference 6, where the proper boundary conditions

at the shock are used (for a spherical shock corresponding to a

spherical body) it is implied that the difference in reduction of heat-

transfer rates is mainly based on the inadequacy of the assumption of

constant pressure distribution. However, it is shown below, by substi-

tuting values for reentry conditions into the equations used in that

paper, that the differences in the results are in the main due to a

different choice in magnetic parameter rather than due to the assump-

tion concerning the pressure distribution.

According to equation (15) of reference 6, the pressure variation

in the incompressible flow near the stagnation point is given by
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(58)

The parameters Sb and _ are defined by

_4rb
Sb - (59)

P_U_

and

: (6o)
P(_vel_)st

where (_ve/_e)s t represents the velocity distribution near the stagna-

tion point and is given by equation (12b) of reference 6:

_8 ]st : [?(I - _SbJ
(61)

with k = P_/O. It is stated in reference 6 that h corresponds to the

parameter used in references 2 and 4. If this were true h would have

to be dimensionless, but according to equation (61) 8ve/_e does not

have the dimension velocity/length which would be necessary to make

dimensionless. To judge from the development in reference 6, k should

apparently be divided by u_ and multiplied by rb, or

°Bb2 °%_b
= - (62)

_v

8Xlst

The quantity Sb is assumed to be given_ since Bb is assumed not

to vary during the interaction; rb and _ are known, as well as p_

and u corresponding to the conditions ahead of the shock. The param-

eter h for the stagnation region was to be calculated. For the present

purpose it is most convenient to establish the ratio of Sb and k.

According to equations (99) and (62), with k = p /p,
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Sb

h

_u

%;x
1/2

(63)

In reference 6 the assumption is made that for rentry conditions Sb

2/3 and the density ratio O/P_ is about 15. Substitution of these

values into equation (63) gives Sb/_ = 5.77.

is

This value for Sb/h is used in calculating the deviation from the

condition of constant pressure distribution by means of equation (58).

Since without the magnetic field the pressure distribution is

-k sin%
Pb - Pst = 3

the relative deviation from the pressure difference that would exist

without the magnetic field is

(64)

When Sb = 2/3 and Sb/h : 5-77, _P is only 0.07. To m_ke

certain that this small relative deviation of the pressure is not Just

accidental, slightly higher values of Sb (say Sb = i) were investi-

gated (Sb = 2/3 is perhaps a little conservative for reentry condi-

tions); some smaller values of p/p_ were also used, with the result

that the relative pressure deviations still remained small. Further-

more, the value of h was verified by using the "modified Newtonian

theory" for the value of (Su/SX)s t without the magnetic field:

()du = 7b _(Pst- P_)st
(65)

Small values for Ap were again obtained.

The smallness of the deviations seems further plausible in view of

the fact that Ap goes through zero for the range of values of Sb and
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Sb/h investigated (see also physical interpretation in the appendix).
Specifically, for the assumedcase of constant pressure distribution
(Ap = 0), equation (64) yields a value of 5 for Sb/h when Sb = 2/3.

Evidently k in reference 6 is equivalent to the significant
parameter h2(0)/7 in reference 3, since both refer to conditions near

the stagnation point. For Sb _ 2 and Sb/h = 5, _ _ 2 i _ 2 This

value for _ is to be comparedwith the value for h2(O)/w = oB2/DD
in reference 3, which is 4.9. It is evident from figure 1 in reference 3
that the high reduction in heat-transfer rate is essentially due to the
extreme values of the magnetic parameter, which would correspond to
reentry conditions at altitudes higher (smaller p) than that at which
the maximumheating rate occurs, unless seeding with easily ionizable
materials (higher o) is considered. For a more realistic value of
h2(0)/T or h the reductions in heat-transfer rates obtained in ref-
erences 3 and 6 should approximately agree.

REMARKSONPRACTICALAPPLICATIONOFMAGNETICFIELDS

TOREENTRYPROBLEM

In addition to producing a reduction in heat-transfer rates, the
magnetic field has the function of increasing the drag. The resulting
deceleration decreases the total heat transfer to the missile (ref. 9).
It seems_lear from the previous section that the application of a
magnetic field near the nose will not yield sufficiently large effects
unless seeding with easily ionizable materials or someother meansof
boosting the electric conductivity is considered. Effects due to vari-
able conductivity are not considered here. Actually, since the drag
due to the magnetic force is proportional to the velocity, it could have
been more or less expected that attempts to obtain drag increase in the
low-velocity region near the nose would not be successful.

The use of magnetic drag skirts at somedistance from the nose
looks more promising. Such drag skirts could also reduce the velocities,
skin friction, and heat-transfer rates near the nose in a manner similar
to that of a blunt body with a concave nose. Lift control through
magnetic fields also offers an interesting possibility. In this connec-
tion the effects of a magnetic field due to a thin solenoid extended
into the flow (ref. 10) are of interest.
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CONCLUSIONS

i. The law of deformation of the magnetic lines assumedin someof
the existing literature on magnetohydrodynamicstagnation flow corre-
sponds to magnetic lines which diverge as they approach the missile nose.
The magnetic lines are dragged along by an electrically conducting flow.
If this condition is to hold true the magnetic lines must have roots in
a magnet situated away from the nose rather than one in the nose. The
drag forces are taken up by this magnet situated away from the nose, or,
in other words_ the magnetic field is not assigned at the nose but is a
result of the interaction. The boundary conditions specified in this
literature, that the magnetic lines are equally spaced at the missile
nose and normal to it, reinforce these conclusions. Their fulfillment
requires that the magnetic permeability of the nose approach infinite
values and thus offer no resistance to the displacement of magnetic
lines.

2. For the magnetic deformation law and the boundary conditions
stated in conclusion i, the assumption that potential flow is maintained
outside the boundary layer is a good approximation only if the induced
magnetic effects or the deformation of the magnetic lines is negligibly
small. This conclusion is contrary to the implications of the numerical
analysis in reference 2 which is based on the complete equations that
include the induced effects. However_the magnetic Reynolds number
RM = _UL which is representative of the induced effects is implicitly
based on the boundary-layer thickness; thus the results in reference 2
are actually restricted to small induced effects.

3. The comparison of the calculations for small induced effects in
reference 5 with those for supposed full induced effects seemsunneces-
sary, since the restriction to small induced effects is implicitly con-
tained in reference 2. This is also brought out by the fact that the
results for the shears in the two references differ by only 1/400.

4. A law of deformation of the magnetic lines exists for which
potential flow is maintained when induced effects are large.

5. The restriction to small induced magnetic effects does not always
guarantee the existence of potential flow under action of a magnetic
force.

6. The reduction in heat-transfer rates (and skin friction) due to
the magnetic field is given as 28 percent in reference 3, whereas in
reference 6 a reduction of only 5 percent is obtained. The difference
is ascribed in reference 6 to the simplifying assumption made in refer-
ence 3 that the pressure distribution behind the bowwave is maintained
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independently of the magnetic-field strength. However_it is shown in
the present paper that the major reason for the differences in heat-
transfer rates is a different choice of a magnetic parameter that
depends on reentry conditions. The reentry conditions used in refer-
ence 6 are in better correspondence with the maximumheat-transfer
rates which are to be reduced by the magnetic field.

7- For potential flow outside the boundary layer the pressure can
be split into a magnetic and a dynamic part. This splitting leads to
considerable simplification in the presentation of magnetohydrodynamic
boundary-layer effects.

8. The division of boundary-layer flows into two types, where the
pressure or the velocity distribution in the potential flow is maintained
independently of the field strength, leads to a useful classification.

9. For the case of constant pressure distribution, shear and heat-
transfer rates are reduced, _hereas for the case of constant velocity
distribution, they are increased.

i0. A comparison of the magnetic force effects with the better known
effects of pressure gradients showsthat the decreases and increases in
shear and heat-transfer rates are smaller for the magnetic case.

ii. For flow along a flat plate with constant velocity maintained
under action of a magnetic force, a rare case occurs in which the velocity
profile of the bomndarylayer approaches asymptotically a fixed shape and
the shear approaches a fixed value.

Langley Research Center,
National Aeronautics and SpaceAdministration_

Langley Field, Va., December30, 1958.
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APPENDIX

APPLICATION OF THE SIMPLIFIED APPROACH TO A VARIETY OF

MAGNETOHYDRODYNAMIC BOUNDARY-LAYER FLOWS

General Remarks

It is shown in the body of the paper that for potential flow out-

side the boundary layer the equations can be presented in the simplified

form (eq. (53)):

_u _u l_(p _2u
u _x + v_+ --p D + PM) + mlu = v _y 2

(AI)

The magnetic force mlu P is held in balance by the pressure gradient

_pM/_X according to equation (54):

1 _P_
+ mlu P = 0

P _x
(Ae)

Equations (AI) and (A2) can be combined to yield the alternate form

u_--u+ v_+--_x
62u (A3)

lp + ml(u _ Up) =

The problems arising from the somewhat artificial nature of the

two-dimensional boundary conditions_ especially for the magnetic field,

are not discussed here.

Boundary Layer Along a Flat Plate

With pressure distribution maintained.- The assumption that the zero

pressure gradient is maintained independently of the magnetic-field

strength is conveniently substituted into equation (A1). As a result,

the equation reduces to

u Bu+ v 6__u+mlu = v --62u (A4)
_x _ _2
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The boundary condition in the potential flow, where (according to

the usual boundary-layer assumption) v _2---_uand v _u approach zero, is

u _u _-_ mlu (A5)
_x

The split-pressure approach is advantageous in that it shows that

both the hydrodynamic and the magnetic pressure gradient can vary, since

 (pD+ :o (A6)

Equation (A4) is similar in structure with the well-known equation for

boundary-layer flow under unfavorable pressure gradient. The essential

difference is that the pressure gradient acts uniformly across the

boundary layer, whereas the magnetic force mlu decreases with the

reduction of the velocity toward the wall.

In this connection it should be pointed out that the velocity pro-

file in sketch (f) of reference i which has negative velocities, or

reverse flow, is not correct since the magnetic force approaches zero

at the wall and, in addition, the smoothing effect of the viscosity is

important. As an increasing amount of boundary-layer material approaches

zero speed, continuity requires that the flow be lifted from the wall,

but reverse flow cannot occur.

It is also evident from the structure of the magnetic force that

the reduction in skin friction will be less than that for the corre-

sponding pressure gradient. Estimates of skin-friction reduction due

to the magnetic force could be developed on this basis.

A simple comparison of the reduction in heat-transfer rates for the

two cases is also possible through the comparative deviations from the

Reynolds analogy when the static electric intensity E is zero. The
reason is that under such conditions the total energy (including Joule

heating) is constant under the action of the magnetic force. The con-

stancy of total energy under these conditions has been derived in sev-

eral papers (refs. i, Ii, 12, and 13). Since the deviations from the

Reynolds analogy for the cases of pressure gradients are well established
for conditions of constant total energy (ref. 14), the corresponding

trend for the magnetic case can be readily established. Like the reduc-

tion in skin friction, the reduction in heat-transfer rates can be

expected to be less for the magnetic case than for the corresponding

pressure-gradient case.
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With stead_ velocity distribution maintained in the potential flow.-
For the case in which steady velocity distribution is maintained in the

potential flow, it is convenient to use equation (A3). As y _ _ and

u _ Up the potential-flow boundary condition is

$Up i _PD

Up_-_--+ = 0P _x
(A7)

since the terms and w(_2Up/_y 2) are zero. In order to

apply the _oundary condition of equation (A7) to equation (AS)_ the latter

is rewritten, using u(_u/_x) = _(u2/2)/_x_ in the following form:

2)
_-_-+v--+_ - = --_y2

2,,

where, according to equation (A7) _ jUp ] i _PD is equal to zero.
'

For a given potential-flow velocity distribution the steady-flow

equation thus becomes_ with use of the boundary conditions,

_x\2/ $x\2 / + v c%u.+ ml_u _ up) = v-
_2u (Ag)
_y2

For a flat plate when the potential-flow velocity is held constant (that

is,  (up212)/ x= 0)equation(Ag>re ucesto

_U c_u + ml(u_ Up) = w __2u (A10)
u _ + v o_ _y2

It is again of interest to compare the magnetic-force term

ml(u - up) with a pressure gradient. Since Up > u, the magnetic-

force term corresponds to a favorable pressure gradient. This corre-

spondence is evidently due to the fact that when the velocity distri-

bution is assumed to be constant the magnetic pressure gradient which

balances the magnetic force -mlu has to "drag" the flow along. The

effect of the magnetic force ml(u - Up) on the shear increase is evi-

dently smaller than the effect of a corresponding pressure gradient.

As a matter of fact, the magnetic force is even zero in the potential

flow but increases toward the wall. However, as the wall is approached

the retarding effects of the viscosity oppose the trend toward increase

in _u/_y and the shear.
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For the flat-plate boundary layer with a constant velocity, it can

be shown that a constant shear (and velocity distribution) is asymptoti-

cally approached. The reason is that the shear diminishes for the flat-

plate boundary layer without a magnetic field, whereas the magnetic force

acts similarly to a favorable pressure gradient in increasing the shear.

An equilibrium state is attained given by

m l(u - up) = w $2-_u (All)

$y2

With the application of the boundary conditions that u _ 0 as
the solution of equation (All) isy _0 and u _Up as y _,

u = Up - e (AI2)

which represents the shape of the asymptotic velocity profile.

With an initial acceleration maintained in the _otential flow.-

Reference i treats the case in _lich an initial acceleration is main-

tained in the potential flow, but in a perhaps less direct manner than

the present split-pressure approach. For the initial acceleration the

unsteady term Su/$t has to be included in equation (A3) but the

inertia terms u(_u/$x) and v($u/$y) can be neglected. As a result,

equation (AS) becomes

$__u+ _I ___PD+ ml(u - Up) = v --_2u (AI3)
_t 0 _x _y2

For potential flow outside the boundary layer where

and = o,
SUp i _PD
--+ - 0
_t P _x

y _y_, u -_Up,

(AZ4)

and the pressure gradient (_pM/_X)/p is balanced by the magnetic force

-mlu P according to equation (A2). In order to apply the boundary con-

dition of equation (AI4) to equation (AI3), the term _Up/_t is con-

viently subtracted and added to give

_u _Up SUp i _PD (u w _2u
St St + _ + _ _--_-+ ml - Up) = _y2 (AIS)
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8Up 1 8PD

where, according to equation (A14), _ + _ _--x

Since Up is a function of time only, 82u/By2

_2(U- Up)/_y 2 and thus eqtlation (A15) becomes

is equal to zero.

can be written as

_ _2 (u
_(u Up) + ml(u - up) = w - up) (A16)

_t _y2

If the relative velocity u - Up is designated as 2_, equation (AI6)

seems to agree with the initial stages of boundary-layer flow over an

accelerated flat plate when the magnetic field is fixed in the fluid

(a case treated in ref. 1). This agreement is mentioned also at the

bottom of page 20 of reference 1. Equation (A13) of the present paper

agrees with the third equation on page 20 in reference l, which is

stated but not derived. The fourth equation on page 20 states that

when y = _, _u/St = $2u/Sy2 = u = O. According to equation (A16) of

the present paper, however, this condition would apply when (u - Up)

or Z_u becomes zero. The last equation on page 20 of reference 1 states
i 8p

that at Y = _' -mlu_ + 0 8x 0 where the subscript _ seems identical

with the P used in the present paper for potential flow. This state-

ment in reference 1 seems in contrast with the fourth equation of page 20
(ref. i), where u is zero at y = _.

Boundary-Layer Flow Near a Stagnation Point

In reference 2 the boundary-layer equation is solved under the

assumption that the pressure distribution is maintained under action of

the magnetic force. Since for stagnation flow a pressure distribution

O bo2 x(Pt - P) D,o = (AI7)

exists without the magnetic field, a pressure gradient

= -b°2x

has to be maintained rather than the zero pressure gradient of flat-

plate flow. Thus
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_'--'o\_/: -b°2x: _ -- + _o _x o _x

where, according to equation (A2),

i _PM

P _x
----+ mlu P = 0

(AI8)

The new hydrodynamic pressure gradient is adjusted to the change

in scale of the potential stagnation flow from bo to b, that is, the

gradient becomes

i _PD = _b2x

The magnetic pressure gradient (_pM/_X)/D : -mlu P undergoes a similar

scale adjustment. In detail, since m I = qBu2/O and up = bx, mlu P

can be written in a more convenient form:

2 2
qB u °Bu-- b2x (AI9)

= Up =mlup p
pb

Equation (AI8) can thus be expressed in the form

7\yf7° = -b2x --_ _x + _ 7x = -b2_ + p--_/
(A20)

there follows 1

(A21)

The scale reduction in equation (A21) agrees with that in reference 2

(where_Bu2/Pbiscalledh2(O)/_)withthedifferencethatbo
instead of b is used in gBu2/pb in the reference_ this means that

an additional linearization is contained in reference 2. (In ref. 2

h2(0)/7 is somewhat differently defined, but in ref. 3 it is the same

as in the present paper.)

The pressure gradient (_pD/_X)o/p of the nonmagnetic flow is thus

split under action of the magnetic force into a gradient _pD/_X = -b2x

duetoscalereductionoftheno_gneticflow_d a gradient(_/_x)/p
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that balances a scale-reduced magnetic force to ir_intain the new veloc-

ity distribution at the reduced scale. The effect on the shear is thus

also split into two parts. One is a reduction due to the nonmagnetic

scale-reduction effect of the stagnation flow. The other (as is clear

from the discussion of the flat-plate case) is a shear increase at the

scale-reduced velocity distribution. Although, according to equa-

tion (AIS), the reduction in pressure gradient due to scale reduction

bPD/ bPD _ bPM

_-_-/o _ bx

equals the favorable pressure gradient _pM/_X that maintains the con-

stant velocity distribution (at reduced scale), the shear increase due

to this pressure gradient will have to be smaller than that due to scale

reduction. The reason is, as noted before, that the shear increase due

to the magnetic pressure gradient at constant velocity distribution is

smaller than that due to the corresponding favorable pressure gradient.

This fact is strongly in evidence in the numerical results of reference 2.

Similar arguments can be made for the reduction in heat-transfer

rate, which consists of one part based on a nonmagnetic scale reduction

of the stagnation flow and a smaller increase corresponding to the

increase in skin friction at reduced velocities. The basic results for

the deviation from Reynolds analogy (ref. 14) for flows with pressure

gradients apply with proper modifications.

For stagnation flow, when the original velocity distribution is

maintained in the potential outside flow the pressure gradient (_pD/_X)o

is also maintained (in contrast to the combined pressure gradient

$(PD + PM)/$x) " As a result, according to equations (AI), (A2), and (A3),

the magnetic force mlu P will have to be balanced by the pressure gra-

dient _pM/_X. The resulting shear increase is now not reduced by a scale

reduction as was the case for the unchanged pressure gradient. In the

actual case, however, the tendencies toward constant pressure distribu-

tion should predominate.

It may be of interest to note that in the calculations of refer-

ence 6, where the proper boundary conditions at the shock are used, the

effect of the magnetic force on the pressure gradient near the stagna-

tion point may be a small decrease, a small increase, or no change.

These small variations were taken as supporting evidence in the present

paper that the pressure gradient is essentially maintained. The case

in which the pressure gradient is reduced by the magnetic force with a

resulting local drag increase has so far not been mentioned, but it can

be readily constructed by starting with equation (AIS) and assuming that
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the sum of the pressure gradients _--x + _-_- is smaller than the origi-

nal press_egradient(_pDi_X)Finally,itshoedbenotedthattheO"

possibility of a pressure-difference increase near the stagnation point

implied by calculations in reference 6 suggests a small local drag

decrease due to the magnetic force. In principle, a local drag decrease

is not impossible since the magnetic effects are similar to frictional

or tD_ottling actions. Of course, in a transonic flow such as that

around a blunt-nosed body, a local drag decrease does not mean that the

total drag decreases; as a matter of fact, local considerations offer

very incomplete information concerning the drag.



41

REFERENCES

i. Rossow, Vernon J.: On Flow of Electrically Conducting Fluids Over a
Flat Plate in the Presence of a Transverse Magnetic Field. NACA
TN 3971, 1957.

2. Neuringer, Joseph L., and Mcllroy, William: Incompressible Two-
Dimensional Stagnation-Point Flow of an Electrically Conducting
Viscous Fluid in the Presence of a Magnetic Field. Jour. Aero.
Sci., vol. 25, no. 3, Mar. 1958, pp. 194-198.

3. Neuringer, Joseph L., and Mcllroy, William: Eydromagnetic Effects on
Stagnation-Point Heat Transfer. Jour. Aero. Sci. (Reader's Forum),
vol. 25, no. 5, May 1958, pp. 552-334.

4. Meyer, Rudolph C.: On Reducing Aerodynamic Heat Transfer Rates by

Magnetohydrodynamic Techniques. Preprint No. 816, Inst. Aero. Sci.,

Jan. 1958.

5. Rossow. Vernon J.: Magnetohydrodynamic Analysis of Heat Transfer

Near a Stagnation Point. Jour. Aero. Sci., vol. 25, no. 5, May 1958,

PP. 334-335.

6. Kemp, Nelson H.: On Hypersonic Blunt-Body Flow With a Magnetic Field.

Res. Rep. 19, AVC0 Res. Lab., Feb. 1958.

7. Ackeret, Jakob: Uber exakte L_sungen der Stokes-Navier-Gleichungen

inkompressibler Flussigkeiten bei veranderten Grenzbedlngungen.

Z.a.M.P., vol. III, fasc. 4, 1952, pp. 259-271.

8. Prandtl, L., and TietJens, O. G. (L. Rosenhead, trans.): Fundamentals

of Hydro- and Aeromechanics. McGraw-Hill Book Co., Inc., 1934.

9. Allen, H. Julian, and Eggers, A. J., Jr.: A Study of the Motion and

Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at

High Supersonic Speeds. NACA TN 4047, 1957. (Supersedes NACA

RM A55D28.)

i0. Kemp, Nelson H., and Petschek, Harry E.: Two-Dimensional Incompressi-

ble Magnetohydrodynamic Flow Across an Elliptical Solenoid. Res.

Rep. 26, AVCO Res. Lab., Apr. 1958.

ii. Finkelnburg, W., and Maecker, H.: Elektrische B_gen und thermisches

Plasma. Handbuch d. Physik, Bd. XXII, Springer-Verlag, 1956.

pp. 254-444.

12. Pai, Shih-l.: Energy Equation of Magneto-Gas Dynamics. Phys. Rev.,

vol. 105, no. 5, Mar. l, 1957, pP. 1424-1426.



42

13. Resler, E. L.. Jr., and Sears, W. R.: The Prospects for Magneto-

Aerodynamics. Jour. Aero. Sci., vol. 25, no. 4_ Apr. 1958,

pp. 235-_45, 258.

14. Cohen, Clarence B., and Reshotko, Eli: Similar Solutions for the

Compressible Laminar Boundary Layer With Heat Transfer and Pressure

Gradient. NACA Rep. 1293, 1956. (Supersedes NACA TN 3325.)

NASA-L_.gl_yFi_m,W. L-166



0

bll ,.1=/

Z

- _o-a

r_No_

oO_

",_ 0

'_ ''< ._0

z_z_ z

_ 0

_0_

.<¢1

.a_u

O<
_aZ

• i

_ r_ " Ou_

"_ 0

u9 _

0a _; 0 _ 0a._
< 8m_z

i

_o

_ 0

._0_ .'

_<_
_u ,

_ "_o

b/_._ ,_

o_0a<

i

"F.0

•,1_0 0

r._ c_

_u,

_r..)

_z°_z_z°<

8

Z

L_




